AD=A033 383

UNCLASSIFIED

F |

T

NORTHWESTERN UNIV EVANSTON ILL DEPT OF INDUSTRIAL E==ETC F/G 12/2

SADDLE POINTS AND DUALITY IN GENERALIZED GEOMETRIC PROGRAMMING: (U)

AUG 76 E L PETERSON AF=AFOSR=2516=73
DISCUSSION PAPER=239 AFOSR=TR=76=1232 NL

END

DATS
FILME

2

™ |
@lI




o
== o &

ol TOR o)

11 ™ b=
=5z
=

‘ 2S5 flis. e,







AFOSR - TR- 76 < 1887

Ay
DISCUSSION PAPER NO:-239
SADDLE POINTS AND DUALITY IN

GENERALIZED GEOMETRIC PROGRAMMING

by
Elmor L. Peterson

August 1976




Saddle Points and Duality in Generalized Geometric Programming

by

Elmor L. Peterson*

Abstract. Extensions of the ordinary Lagrangian are used both in saddle-
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1. Introduction. Optimization problems from the real world usually
possess a linear-algebraic component, either directly in the form of pro-
blem linearities (e.g., those involving the node-arc incidence matrices

in network optimization) or indirectly in the more subtle form of certain
problem nonlinearities (e.g., those involving the coefficient matrices

in quadratic programming or, perhaps more appropriately, those involving
the exponent matrices in signomial programming). As demonstrated in the
author's recent survey paper [1] and some of the references cited therein,
such a component can frequently be exploited by taking a (generalized)
geometric programming approach. In fact, geometric programming is

primarily a body of techniques and theorems for inducing and exploiting

as much linearity as possible.

The duality that exploits such linearity differs considerably from
ordinary Lagrangian duality. Since section 33 of Rockafellar's book [2]
indicates that any such duality can be viewed as originating from an ap-
propriate Lagrangian (or saddle function), it is natural to seek such a
Lagrangian for geometric programming. Although such a Lagrangian and the
corresponding saddle-point characterizations of optimality have already
been described in 1], proofs are given here for the first time.

In geometric programming, problems with only linear constraints are
treated in essentially the same way as problems without constraints.

Only problems with nonlinear constraints require additional attention and

hence are classified as constrained problems.

Since many important problems are unconstrained (e.g., most network
? optimization problems), and since the theory for the unconstrained case
is much simpler than its counterpart for the constrained case, the un-

constrained case is treated separately (even though its theory is actually
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embedded in the theory for the constrained case).

The only prerequisites for section 2 are the basic facts about the
conjugate transformation described in section 3.1.2 of [1] (and established
in [2]). An additional prerequisite for section 3 is the geometric

inequality established in section 3.3.3 of [1].

2. The unconstrained case. In harmony with sections 2.1 and 3.1

of [1], suppose that g:C is a (proper) function g with a nonempty (effective)
domain CCEI'; (7.-dimensional Euclidean space), and assume that Z is a non-
empty cone in En' For purposes of easy reference and mathematical pre-
cision, the resulting "geometric programming problem'" 7 is now given the

following formal definition in terms of classical terminology and notation.

PROBLEM 7. Using the feasible solution set

A
J=2ZNC,

calculate both the problem infimum

A
o= inf gCx)
X €

and the optimal solution set

A
H={ucd|gr) =l
Needless to say, the "ordinary programming" case occurs when X is actually

the entire vector space Er'

2.1. Saddle points. Our Lagrangian for problem ¢7 utilizes the "con-

jugate transform" h:P of g:C, whose domain




.Bg{yEE,\ [ sup [(y,x) -g(x)] is finite}
ael

and whose functional value

h(z/)é sup [(y,x) -g )],
X €eC

The corresponding saddle-point characterization of optimality also utilizes

the '"dual cone"
A :
i {y€ E | 0<{x,y) for each x€X}.

The following definition lays a foundation for that characterization.

DEFINITION. For a consistent problem 77/ with a finite infimum ¢, a P_vector

is any vector ;y* with the two properties

y* €D

and

@= inf L Cr;y%),
x€ex ¢

where the (geometric) Lagrangian

A
Lg Cos) =G, =P @) .

It is worth noting that even in the ordinary programming case the geo-
metric Lagrangian Lg is unlike the ordinary Lagrangian L0 =g. In fact,
Lp exists only if g has a conjugate transform A.

The following theorem gives a saddle-point characterization of optimal

solutions x* and P vectors y*. It also provides a basis for other im-




portant characterizations of such vectors.

Theorem 1. Given that ¢:C is convex and closed, let x*€XZ and let y* €.,

Then x* is optimal for problem 7 and y* is a P vector for problem 7 if and

only if the ordered pair (x*;y*) 1s a '"saddle point'" for the Lagrangian Lg’

that is,

sup L (x*;1) =L (x*;u%) = inf L (r;y%),
y€EBD g xex 7

in which case LO has the saddle-point value

Lg Cc*; %) =g c*) =,
Moreover,

sup L_ (x*;y) =L (x*;y*)
yES g g

if and only if x* and y* sati both the feasibility condition
XREC

and the subgradient condition

y* €3 (%),

in which case

L, Ge*s%) =g G0

Futhermore,
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L s = inf L (c;y*
g(x*y*) n g(xy)

XEX

if and only if x* and y* satisfy both the feasibility condition

and the orthogonality condition

0 = (x*,y%),

in which case

Lg Ok %) = <h (/%) .

Proof. The following two lemmas must be used repetitively.

Lemma la. Given that g:2 is convex and closed, a vector X satisfies

the restraint x€C if and only if sup Lg(,x;y) is finite, in which case

el

sup L_(x;y) =g (x)
yeh ¢

and

{yes| ug(.x;y) =g )} =59 ().

Proof. Immediate from the definition of Lg(x;y) and conjugate transform

theory.

Lemma 1b. A vector y in ./} satisfies the cone condition y <% if and only if

inf L (r;y) is finite, in which case
X €EZX

s e ikt 2
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inf L (c5y) =-Ay)
xex ¢

{xeZ | Lg(x;y)=-’“(y)}=[x€ZIO=<f,g>}-

Proof. Immediate from the assumption that 7 is a cone; because in that

case it is clear that 4<% if and only if inf (x,y) is finite, in which .~

x ek $

case inf (x,y) =0.
XEX

e

Now, assuming that x* is optimal for problem 7 and that y* is a P

vector for problem ¢, we deduce from Lemma la that

sup L (r*;y) =g@c*) == inf L (xr;y%), :‘
yes ¢ xex 9

by virtue of the defining properties for optimal solutions and P vectors.
Notice that the first and second equations show that Lﬂ Cexs %) <g (o) =0,

and observe that the second and third equations show that g (x*) =CQSLQ (k%) ;

o A AITDAE W T i N O

so we infer that

i

i

Lg Ce*sy*) =g (%) =,

Consequently, (£*;y*) is a saddle point for Lg'

Conversely, assuming that (x*;y*) is a saddle point for Lg’ we deduce
from Lemma la that x*€; so x* is feasible by virtue of the hypothesis i
x*€2%. From Lemma la we also infer that sup Lﬂ(x*;y) =g (¢*); so the

vES
saddle-point equations imply that %

g

g G&*) = inf L Cr;p*),
! xEX ¥

which in turn means that

g Gc*) SLg(x;'/*) for each x€X.
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Moreover, Lemma la also implies that

Lg(,r;y*) <g (r) for each x € o,

by virtue of the hypothesis y*€¢ 5. It then follows from these two dis-
played inequalities that g(«*) <g(r ) for each x €o/. Thus, x* is
optimal for problem &, and hence ¢ =g (¥*). This equation and the pre-
ceding displayed equation show that y* is a P vector for problem 7, by
virtue of the hypothesis y*€ s,

Now, assuming that sup L (r*;y) =L (c*;y*), we infer from Lemma la
yes ¥ ¢

that x* €C and that Lﬂ(x*;y*) =g (x*); which in turn imply that y* € 5y (x*)
by virtue of the hypothesis y*€./ and Lemma la. Conversely, assuming
that x*€C and that y*€ 3y (x*), we infer from Lemma la that

sup L Qe*;y) =g Q%) =L (Qex;y%) .
ues ¥ g

Finally, assuming that inf L (r;y*) =L (x*;y*), we infer from Lemma
xXex ¥ g

1b that y* €% and that Lg(x*;y*) =-h(y*), which in turn implies that
0 ={x*,y*) by virtue of the definition of Lg (x*;%) . Conversely, assuming
that y* €9 and that 0 = {(x*,y*), we infer from Lemma 1lb that
inf L_Qo;y%) = -h(y*) =L_(Qo*; %), q.e.d.
xex 9 g

Since the second assertion of Theorem 1 gives certain conditions that
are equivalent to the first saddle-point equation, and since the third
assertion of Theorem 1 gives certain other conditions that are equivalent
to the second saddle-point equation, Theorem 1 actually provides four dif-
ferent characterizations of all ordered pairs (x*;y*) of optimal solutions
x* and P vectors y*.

Of course, each of those four characterizations provides a character-

ization of all optimal solutions x* in terms of a given P vector u*, as

drio




iR
well as a characterization of all P vectors y* in terms of a given optimal i

solution x*,

Still another characterization of all optimal solutions .r* to certain q

problems & has been given by the author [3].

£ 2.2. Duality. Corresponding to problem 7 is the following '"geo-

metric dual problem' /.

1
E PROBLEM 5. Using the feasible solution set i

i LA (e 5

:
; J={y€cph| inf L (r;y) is finite] : ’
3 xex ¢

and the objective function

AR b b e

A
() = inf L (eiy),
»ex ¥

calculate both the problem supremum

A
Y= sup ¥(y)
yed

and the optimal solution set

A
Te={y€eJ |¥ (@ = ¥}.

Even though problem /3 is essentially a :

‘maximin problem" -- a type
of problem that tends to be relatively difficult to analyse -- the
minimization problems that must be solved to obtain the objective function

%:J have trivial solutions. In particular, Lemma 1b clearly implies that
J=>yNs and ¥(y) = -h(y),

so problem A can actually be rephrased in the following more direct way.




PROBLEM /5. Using the feasible solution set

JT=yns,

calculate both the problem infimum

A
¢ = inf h(y) - -v
yed

and the optimal solution set

Te={yeT | h@) - ).

When phrased in this way, problem /@ closely resembles problem 77 and is in
fact a geometric programming problem. Of course, the geometric dual pro-
blem /7 can actually be defined in this way, but the preceding derivation
serves as an important link between geometric Lagrangians and geometric
duality (analogous to the link between ordinary Lagrangians and ordinary
duality).

To further strengthen that link, we first need to develop the most
basic duality theory -- a theory in which the following definition is

almost as important as the definition of the dual problems 7 and /°.

DEFINITION. The extremality conditions (for unconstrained geometric

programming) are:

(1) x€Y and v EY,
(11) 0={x,1)»
(111) vExyp ).

The following '"duality theorem' is the basis for many important theorems.
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4 Theorem 2. 1f x and y are feasible solutions to problems 7 and # re- :

spectively (in which case the extremality conditions (I) are satisfied),

then

0<g(0) +h(y,

with equality holding if and only if the extremality conditions (IT) and

(I11) are satisfied, in which case x and yy are optimal solutions to

problems 7 and  respectively.

"roof. The following fact is formalized as a lemma in order to facilitate

a comparison between the constrained and unconstrained cases.

Lemma 2a. 1f x€C and y¢.b, then

Qesy) s () +h(y),

with equality holding if and only if the extremality condition (III) is

satisfied.

i
p!

Proof. Simply invoke the conjugate inequality presented in section 3.1.2

of [1].

Now, the fact that X and y are in the cone % and its dual ¥ respectively

combined with Lemma 2a shows that
0 < {x,w) <p(x) +h(y),

with equality holding in both of these inequalities if and only if the

equality conditions stated in the theorem are satisfied. q.e.d.
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| The following important corollary is an immediate consequence of

} Theorem 2.

Corollary 2A. 1f the dual problems & and /3 are both consistent, then

(i) the infimum ¢ for problem 7 is finite, and 1

0spt+h(y) for each y¢.7,

(ii) the infimum { for problem /R is finite, and

O0<opot+y

The strictness of the inequality in conclusion (ii) plays a
crucial role in almost all duality theorems.
DEFINITION. Consistent dual problems 7 and /2 for which

0<epty

have a duality gap of v+ §. s
A much more thorough discussion of duality theory and the role played by
duality gaps is given in [1] and some of the references cited therein.

The link between geometric Lagrangians and geometric duality can

now be further strengthened by the following tie between dual problem R

and the P vectors for problem 7 defined in section 2.1.

Theorem 3. Given that problem 7 is consistent with a finite infimum o,

(1) if problem 7 has a P vector, then problem /# is consistent and
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O=p+y,

(2) 4if problem /@ is consistent and 0 =+, then

{* | y* is a P vector for problem &7} =J%,

Proof. If y* is a P vector for problem ¢/, then Lemma 1lb implies that y*
is feasible for problem /A and that ¢ =-A(y*), which in turn implies that
v =h(y*) by virtue of conclusion (i) to Corollary 2A. Consequently,
O0=¢+y and y*cJ*,

On the other hand, if problem /& is consistent and 0 =+, then each
vector y* in J* has the property ¢ = -h(y*), and hence each such vector py*
is a P vector for problem Z by virtue of the first two paragraphs of this

subsection. q.e.d.

An important consequence of Theorem 3 is that, when they exist, all
P vectors for problem 7/ can be obtained simply by computing the dual
optimal solution set J*, However, there are cases in which the vectors
in 7* are not P vectors for problem 7, though such cases can occur only
when 0 <o +y, in which event Theorem 3 implies that there can be no P

vectors for problem 77.

3. The constrained case. In harmony with sectioms 2.2 and 3.3 of [1],

we introduce two nonintersecting (possibly empty) positive-integer index
sets I and J, with finite cardinality o(I) and o(J) respectively. 1In
terms of these index sets I and J we also introduce the following notation

and hypotheses:

(Ia) For each k€ {0}UIUJ suppose that gk:Ck is a (proper) function

8 with a nonempty (effective) domain CkgEn (nk - dimensional Euclidean
k
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space), and for each j€J let Dj be the (effective) domain of the "con-
ugate transform” h,:D, of 3
Japee g By of 8435,

(I11a) For each k€ {0}JUIUJ let xk be an independent vector vari-
able in En , and let K be an independent vector variable with components

k
K, for each j€J.

]
(I1Ia) Denote the cartesian product of the vector variables xi, i€l
by the symbol xI, and denote the cartesian product of the vector
variables xj, j€J by the symbol xJ. Then the cartesian product

0 % 3.4
(x ,x ,x )=x is a vector variable in En’ where

A = -
n=n.+2n, ¥+ n,.
vt 5 3

(Iva) Assume that X is a nonempty cone in En.
For purposes of easy reference and mathematical precision, the resulting
"geometric programming problem” A is now given the following formal

definition in terms of classical terminology and notation.

PROBLEM A. Consider the objective function G whose domain

e k : i +
C={(x,K) | x €Cps ke€{o}jUI, and (x ,v.j)eci, jeJ}

and whose functional value

4 0 +
G(x,l()‘g (x )4’2& (xjyx )’
o e sl

where
5
ct={ed, ) | elther k, =0 and sup (x,d3) <+w, or k, >0 and xJ € ¥,C,)
3 3 ] e, or ¥y >0 2nd x €K,y
and

S . L il b e Lo e e M s L




} i

sup (xj,dj) if ¥, =0 and sup (xj,dj)<+m
dlep diep 1

+ ] g
gj(x ,Kj)

and ijKjCj.

[
=
e
\%
o

8 Gd7e )

b

Using the feasible solution set

A
s={(x,K) €C | x€ X, and gi(xi) <0, 1 €1},

calculate both the problem infimum ]

>

inf G(x,%) ]
(x,K) €S

©

and the optimal solution set

S*éf(x,«.) €8 |G(x,5) =}

A ;

Needless to say, the unconscvrained case occurs when I1=J=¢, gO:C0 =012, ﬂ
A

and X=%. On the other hand, the "ordinary programming" case occurs

when L

J=¢,

A
n, =m and C, =C_ for some set C <E_ k<{o}jur,

k k

and

v '! where there is a total of 1 +o0(I) i

A
X = column space of

L U identity matrices U that are mxm.




In particular, an explicit elimination of the vector space condition x© X

by the linear transformation

cac

b
%o
O
g
]
N

=

shows that problem A is then equivalent to the very general ordinary pro-

gramming problem

Minimize go(z) subject to

ai(z)so i€l

z &€ ..
o

3.1. Saddle points. Our Lagrangian for problem A utilizes the

"conjugate transform" hk:Dk of gk:Ck, whose domain

A
D, = [yk€ E | sup [(yk,xk> -g (xk)] is finite)
n k k
kK X GECk

and whose functional value

k, 4 k _k k
hk(y Y= sup [(y ,x) -gk(x ] 8
k
x* € Ck
Notationally, it involves both the vector variable (x,X) and an analogous
vector variable (y,\), where the vector variable y has the same cartesian-

product structure as the vector variable x and where the vector variable

A has components Ai for each 1 €1. The corresponding saddle-point character-

ization of optimality also utilizes the "dual cone"
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A 3
Y={y€ E, | 0 <{x,y) for each x€ X}.

The following definition lays a foundation for that characterization.

DEFINITION. Consider the function H whose domain
il +
p={(y,) [y“€D,, ke{0}Ud, and Lo ED], 1e1)
and whose functional value
A 0 +, i
H(y,A) =h (y ) +Z h_ (y ,),),
0 1 i i
where
A
D+={(Y1,X ) either A, =0 and sup (ci,y1)<+co, or A, >0 and yié)\ D, }
i i i 0t i g
i

and

sup (ci,yi> if )‘120 and sup (ci,yl) <4
dec dec
4 i i

+ 3 S

A h (yi/A ) if A, >0 and yiex D,.

i1 i i ii
For a consistent problem A with a finite infimum o, a P_vector is any
vector (y*,\*) with the two properties

(y*,A*¥) €D

and

= inf L (x,K; y*,A¥%),
x€X g
K20

where the (geometric) Lagrangian
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A 2
L (x,¢; y,A) ={x,y) - H(y,)) -2 K, (yj).
8 ri§

Needless to say, even in the ordinary programming case the geometric
Lagrangian L8 is unlike the ordinary Lagrangian Loégo +4f }‘igi' In fact,
Lgexists only if By has a conjugate transform hk for k€ {0jJUIUJ.

On the other hand, the following important concept from ordinary pro-

gramming plays a crucial role in the theory to come.

DEFINITION. For a consistent problem A with a finite infimum ¢, a Kuhn-

Tucker vector is any vector A* in Eo( with the two properties

1)

*

7\120 : L O

and

Q= inf Lo(x,'(;k*),
(x,K) €C
x€X

where the (ordinary) Lagrangian

A
L, (x,%51) = G(x, ) +2;J A8, D).

It is important to realize that the preceding definition of Kuhn-Tucker
vectors differs considerably from the widely used definition involving
the Kuhn-Tucker optimality conditions. Even in the ordinary convex pro-
gramming case the two definitions are not equivalent, though it is well-
known that the preceding definition simply admits a somewhat larger set
of vectors in that case.

The following theorem gives a saddle-point characterization of
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optimal solutions (x*,K*) and P vectors (y*,\*). It also provides a

basis for other important characterizations of such vectors.

Theorem 4. Given that gk:Ck, k€ {0}UIUJ is convex and closed, let

(x*,k*) be such that x*€ X and K*¥ 20, and let (y*,A\*) €D, Then (x*,K*)

is optimal for problem A and (y*,A*) is a P vector for problem A if and

only if the ordered pair (x*,k*; y*,A*) is a "saddle point" for the

Lagrangian Lg, that is,

sup L (x*,K*; y \) =L (x*,k*; y* A\%) = inf L (x,K; y*,\*%),
(y,A) €D B g x€X 8
K=>0

in which case L8 has the saddle-point value
Lg(x*,'f*; y*,A%) = G(x*,Kk*) =c.
Moreover,

sup L _(x*,K%; y, ) =L (x*,Kk¥; y* \*%)
(¥y,A\) €D 8

if and only if (x*,«*) and (y*,\*) satisfy both the feasibility conditiong

(X*! K:*) 6 C’ i

*qi
gi(x )<O0 i€1,

and the subgradient and 'complementary slackness" conditions

l y*oéaso(x*o), i
i
* * * * *
- either A, =0 and (x 1,y ") = sup (ci,y 1), or A, >0 and y*iéx*ag (x*i), L€X,
e i i i r A i
| ct€C
i :
* *q 1
ligi(x )=0 i€1,
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either Kj-O and (x )Y j) - 3«@ (x dj), or wJ:>0 and y * ’ag (x j/x ), j€J,
.

in which case

* % * * * *
Lg (x ,K ;3 ¥ ») ) =G6(x ,K ).
Futhermore,

L(X ‘(,Y,))-infL(xK,y*)\*)
x€Xx 8
€« =20

SRR FRTTRT 25 O S TR

* % -
if and only if (x ,K ) and (y ,\ ) satisfy both the feasibility conditions

*
Vi,

hj(y*J)so jeu,

and the orthogonality and complementary slackness conditions

0=(x*,y*>,
s o 2
j j(y ) JET,

in which case

* % * * T,
Lg(x s 5 ¥ LA )='H(y s e

e,

Proof. The following lemmas must be used repetitively.

Lemma 4a. Given that g, :C,, k€ {0} UL UJ is convex and closed, a vector

(x,%) with >0 satisfies the restraint (x,k) € C and the constraints

g (xi)so, i€1 if and only if sup L _(x,«; y,») is finite, in which
i L
(ys\) €D

i, s

case

sup L _(x,K; ¥,\) =G(x,K)
(y>\) €D




{0 €D | Lg(x,K; ¥>A) =G(x,%)}

- 0 0,. $ 1
{0 |y €3850c7); either o, = 0 and (x',y') = sup (ct,yhy

, or
c1€Ci
A, >0 and y'€ 1,28, x), 1€71; A Iy = ;

i S i i » ’ 181(X)‘0, i€I,

either «. =0 and (xj,yj> = sup (xj’dj>’ o '
TR ] djé Dj 1

¥.>0 and jE‘ r j/K. , 1 ET].
3 and y- € 5g, (x7/¥,), ]

Proof. First, observe that

sup L (x,%; y,\) = sup [{x,y) - H(y,)\) -7 th.(yj)]
(y;\) €D B (y,A) €D g T4

sup [(xo.y0> +2 (xi,yi>+2 (xj,yj} - ho(yo) -¥ h:(yi,xi)
(ys\) €D I J I

-Z kb, )1
7 J ]

0 : .
O (G B WO ) Eo N S TR S -h 7))

D s SRR j
+ J/ yjseugj [{x’,5") 'ﬁjhj o)l

From conjugate transform theory we know that the preceding supremum with

index O is finite if and only if xoéco, in which case ¥

P (x%,y% -0y v 1 =g, %)
y’€n,

and

(y% €0yl (x®y% - nyr%) =81 =28, %) .

Analogous information about the preceding suprema with indices i and

j is provided by the following two sublemmas, which collectively complete

the proof of Lemma 4a.




Sublemma 4ai. Given that gi:Ci is convex and closed, the

+
{SUP o [(xi,yi)‘frxi\i -hi(yi,).i)] is finite if and only if both

xiECL and gi(xi)*’aiso, in which case

- . | +
isup + [(x ’y )+Gi)i'hi(y1’)i)] =0
(y »xy) €Dy

and
i +, i i +, 4 .
(o) €D {x7,y ) +agh -h (y751;) =0}
= (&' €D} either 3, =0 and (x',y") =
i i i o i "
sup (ehhy), or A; >0 and y  €x 58, (x); A [g, (x7) +a,] =0}.

=
c Ci

Proof. First, observe that

: 3
{SUP 4 [yt +oa -h ()]
(y">2;) €Dy

+ i +
= sup [sup in,yi)+aiki-hi(yi,xi)l(yl,xi)(zbi}]
AUy

i i el i +

Xi}':o y
su {(xi»yi>' sup (ci,yiﬂ sup (cl,y1><+aa]
i lee ¢ EC
y c i i
if A, =0
sup [a,\
A 20 11
(11)-h(1/x)|i/xen} if 2. >0
o Sl S L S LR S 1
y

)
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4 0 if A, = 0 and xie(—l
| i i
. +oo if 11=0and xii(—li

; = sup [ai)\i*'( i |
§ Xi?-O o if X1>0andx ¢Ci
f

g (xi) if A, > 0 and xiEC

i®1i i i

where the final step makes use of the fact that the zero function with

11 domain Ei (the topological closure of Ci) is the conjugate transform of
43 the conjugate transform of the zero function with domain Ci' Now, note
'f that the last expression is finite only if xléci, in which case the 1last

expression clearly

= sup [aA +h8, D).
)‘i >0

But this expression is obviously finite if and only if gi(xi) +ais0, in

- ‘which case this expression is clearly zero.
+
Finally, given that xiE Ci’ if (yi,xi) € Di’ then the geometric

inequality established in section 3.3.3 of [l] implies that
i 4 + 4 d
(7Y Fogdy mh LA S0 (8 ) +ag
with equality holding if and only if

either A, =0 and (xi,yi> = .sup (ci,yi), or A, >0 and yie A, dg (xi).
3 ciF c i i1
e

+
Moreover, given that gi(xi)+aiso, if (yi,li) EDi, then the fact that

)‘i >0 implies that

A lsi(xi) +0,]1<0,




2%
with equality holding if and only if
A, [g, xb) +a, ] =0.
) N i

Taken together, these two inequalities and the corresponding characteriza-

tions of equality clearly imply the last equation of Sublemma 4ai.

Sublemma 4aj. Given that gj:Cj is convex and closed and given that Fﬁ 20,

il : . 7

the .sup [(x,y?Y - % h (y))] is finite if and only if (x7,¥.)¢C., in

el 5 3 el
j

which case

e . ' g
sup [(x7,y9) - “h (v ]1=¢g. x, %)
vl e 33 j j

]
and

j ) P h N
{y EDj|(X s¥7) “J.hj(y) g, j)}

= {yJ €D, leither K. =0 and (xJ,yJ) = _sup (xJ,dJ),
3 . adep
]

or K, >0 and yJE o8 (xJ/K.)l.
P it i i
Proof. First, observe that

3 o -
: ,yl) if K =0
jsup (xhy™) .

D,
: j
Jydy <e n 1= kg (xI/k) 1f K >0 and xI €«
jsup [<x )y> j j(Y )] jgj(x j) j> an X E jCj
y- € Dj
- it X, >0 and xJ ¢ K.C..
] 3

J

Now, note that this expression is finite only if (x ,Kj)c—C;, in which

case this expression is clearly g;(xj,Kj).

i
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+
J

inequality established in section 3.3.3 of [l] asserts that

Finally, given that (xJ,Kj) €., if yJEDj, then the geometric

(xj.yj) - thj (yj) Sg;(xj.vcj),

with equality holding if and only if

)

either ¥, =0 and (xJ,yl) = ,sup (xJ,dJ), or ¥.>0 and xJ € K.ah.(yj).
j ey j 13
i

This inequality and the corresponding characterization of equality imply

the last equation of Sublemma 4aj, because the relation xJe Kjahj (yj) is
equivalent to the relation yJ Eagj (xJ/Kj) when Kj >0 (by virtue of conju-

gate transform theory).
The proof of Lemma 4a is now complete.

Lemma 4b. A vector (y,A) in D satisfies the cone condition y € Y and the

constraints hj(yJ)SO, j€J if and only if inf Lg(x,w;y,x) is finite, in
xe€X
K0

which case

inf L_(x,K;y,A) =-H(y,)\)
x€X &
K=>0

and
{(x,k) | x€X, K>0; and Lg(x,vc;y,x) = -H(y,M\) }
= {(x,%) | x€X, £20; 0=(x,y); and thj(y5)=o, jeal.

Proof. First, observe that
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inf L (x,¢;y,)) =inf [(x,y) - H(y,}) - 7 th (y) )]
x€X x€X
K=>0 >0

=inf (x,y) +inf 2« [ hj v’ )] - H(y,A).
x€X K=0J
The proof of Lemma 4b is now immediate from the assumption that X is a

cone and elementary considerations.

Now, assuming that (x*,X*) is optimal for problem A and that (y*,A%*)
is a P vector for problem A, we deduce from Lemma 4a that
sup L (x*,k¥;y,)A) =G(x*,k*) =¢= inf L (x,K;y*,\*),
Kz0
by virtue of the defining properties for optimal solutions and P vectors.
Notice that the first and second equations show that
Lg(x*,K*; y*,A*) < G(x*,«{*) =¢, and observe that the second and third

equations show that G(x*,V*)=cpng(x*,K*; y*,A*); so we infer that
Lg (x*, K%, y*,0%) =G (x*,K*) =¢p.

Consequently, (x*,K*; y* A*) is a saddle point for L .

Conversely, assuming that (x*,K*; y* i*) is a saddle point for Lg’ we
deduce from Lemma 4a that (x*,K*) € C and gi(x*i)s‘), i€I; so (x*,Kk*) is
feasible by virtue of the hypotheses x*€ X and K* >0. From Lemma 4a
we also infer that sup L_(x*,K*; y,\) =G(x*,K*); so the saddle-point

(v, €D E
equations imply that

Gx*, k%) = 1nf L (x,K;y%,)%),
x€X
K=0

e

Ty
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L which in turn means that
G (x*,K*) ng(x,K; y*, %) for each x€ X and each K >0.
Moreover, Lemma 4a also implies that E

Lg(x,K; y*,A%*) <G(x,K) for each (x,K) €S,

Al and

by virtue of the hypothesis (y*,A*) € D. It then follows from these

g two displayed inequalities that G(x*,k*) <G(x,¥) for each (x,K) € S. Thus,

V (x*,4*) is optimal for problem A, and hence ¢ =G(x*,«*), This equation z
and the preceding displayed equation show that (y*,\*) is a P vector for

problem A, by virtue of the hypothesis (y*,A*) € D.

o

Now, assuming that sup L (x*,k*; y,)) =L_(x*,4%; y* i%*), we
(¥y,\) €D &

*
infer from Lemma 4a that (x*,K*) €C and gi(x i') <0, 1 €I, and that

Lg(x*,f*; y*,A0%) =G(x*,€*), This in turn implies that
* *
y O €og,(x 5 R

* * * * * * * *
either )\1=0 and (x 1,y i) = 1sup (ci,y 1), or x1>o and y iéki agi(x i),

c~ €€ :
: i€1, 1‘
* *{ 1
Xigi(x )=0 1T, :
s
either " =0 and (x*j,y*j) = sup (x*j,dj), or K*>0 and y*j €0g (x*j/K*),
] adep j j J
3€d,s

by virtue of the hypothesis (y*,A*) €D and Lemma 4a. Conversely,

* 3
assuming that (x*,K*) € C and gi(x j') <0, 1€1I, and that (y*,\*) satisfies l
the preceding displayed relations, we infer from Lemma 4a that

sup L (X*)K*; Yy, )\) =G(x*9 K*) =L (x*, K*; Y*, A*) .
(y,n€ep $

Finally, assuming that L _(x*,K*; y* A*) = inf L_(x,¥; y*,A\¥), we
g g |
x€X
K0 ‘
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*
infer from Lemma 4b that y*€ Y and h,(y j) <0, j&£J, and that

i
Lg(x*,f*; y*,A*) = -H(y*,A*). This in turn implies that

0 = (x*,y*)
and

ho =0 jesg
11 aad

by virtue of the hypotheses x*¢ X and K*¥ >0. Conversely, assuming that
*
y*€ Y and hj(y j) <0, j€J, and that (x*,K*) satisfies the preceding dis-
played relations, we infer from Lemma 4b that inf L (x,¥; y*, *) =
x€ X

K =0
-H(Y*,)**) =Lg(x*,“.*; Y*.X*)- q.e.d.

Since the second assertion of Theorem 4 gives certain conditions

that are equivalent to the first saddle-point equation, and since the
third assertion of Theorem 4 gives certain other conditions that are
equivalent to the second saddle-point equation, Theorem 4 actually
provides four different characterizations of all ordered pairs (x*,K*;
y*,\*) of optimal solutions (x*,X*) and P vectors (y*,\%*).

Of course, each of those four characterizations provides a
characterization of all optimal solutions (x*,%*) in terms of a given
P vector (y*,x*), as well as a characterization of all P vectors (y*,\*) in
terms of a given optimal solution (x*,¥*).

Still another characterization of all optimal solutions (x*,K*) to

certain problems A has been given by the author [3].

3.2. Duality. Corresponding to problem A is the following '"geo-

metric dual problem" B.

poegeve
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PROBLEM B. Using the feasible solution set

&

T={(y,\)€D| inf L (x,%; y,)) is finite)
xéx 8
=0

and the objective function

A
S/(y,k)= inf L (x:K; )’;7\),
xcx 8
K>0

calculate both the problem supremum

ne

sup ¥ (y,1)
(y,\)ET

and the optimal solution set

™2 {(y, ) € T |¥(y,0) = ¥].

Even though problem B is essentially a "maximin problem'" -- a type
of problem that tends to be relatively difficult to analyse -- the minimi-
zation problems that must be solved to obtain the objective function ¥:T

have trivial solutions. 1In particular, Lemma 4b clearly implies that
T={(y,\) ¢D|yeY, and hj(yJ)SO, j €J} and ¥ (y,\) = -H(y,\),

so problem B can actually be rephrased in the following more direct way.

PROBLEM B. Consider the objective function H whose domain
A . i S er
D={(y,\) |y“€D,, kK€ [0}UJ, and Gv},0) € D], 1€T)

and whose functional value

A
H, ) =hy 0% +Z 0 6ta),
I




=29~

where

A
D+={(y1,x ) | either A, =0 and sup (ci,y1)<+a=, or i, >0 and inX D, }
1 s W g or ;>0 2nc 11
i

and

Sup (ci,yi) if 2, =0 and sup (ci,yi><+m
ctec, i °1€°1

+, i )

hi(y,xi)-
Ah(yilx) if A >0andy1€xD -
ii i =N 7Y = 14"

Using the feasible solution set

22 (. p €D fyer. and h, o <0, jeay,

calculate both the problem infimum

ne

¥ inf H(y,A) =-¢

(y,\E&T

and the optimal solution set

A
T* = {(y,\) €T | H(y,\) =¢}.

When phrased in this way, problem B closely resembles problem A and is

in fact a geometric programming problem. Of course, the geometric dual
problem B can actually be defined in this way, but the preceding
derivation serves as an important link between geometric Lagrangians

and geometric duality (analogous to the link between ordinary Lagrangians
and ordinary duality).

To further strengthen that link, we first need to develop the most

basic duality theory -- a theory in which the following definition is
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almost as important as the definition of the dual problems A and B.

DEFINITION. The extremality conditions (for constrained geometric

programming) are:

(1) x€X and yEY,
an gi(xi) <0, 4€1 and hj(yj) <@, €2, 1
(I11) 0=({x,y), :
a9 v € agy ), 5
(V) either A, =0 and (b, yhy 'cisgpc (ci,yi> or A >0 and yte A ?jgi(xi), :
} 181,
(VI) either #, =0 and o g 8 =djs;pD T . ¢,>0 and " € ne, ("j’"j):
; jeJ,
(Vi) Aigi(xi)=0, 1€1, and w.jhj(yj)=o, jed.

The following "duality theorem" is the basis for many important

theorems.

Theorem 5. If (x,X) and (y,\) are feasible solutions to problems A and
B respectively (in which case the extremality conditions (1) and (II)

are satisfied), then {

0<G(x,%)+ H(y,)), !

with_equality holding if and only if the extremality conditions (III)

through (VII) are satisfied, in which case (x,K) and (y,\) are optimal
solutions to problems A and B respectively.
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Proof. The following lemma will also be used in the proof of other

theorems.

Lemma 5a. If (x,X)€C and (y,A) €D, then

(x,y) sG(x,k) +20 A, g (xi) +H(y,\) +_ ©.h (yj),
p i gy 33

with equality holding if and only if the extremality conditions (1V)
through (VI) are satisfied. Moreover, if hj(yj) <0, j€J (i.e. the second

part of extremality condition (II) is satisfied), then

i T
G(x,%) +}I: 185 (x7) +HG, M) +2JJ thj

o) 26,0 +Z g, ) +uGy, ),
I

with equality holding if and only if the second part of extremality con-

dition (VII) is satisfied. Furthermore, if gi(xl)SO, 1€I (i.e. the

first part of extremality condition (II) is satisfied), then

G(x, k) +Z A8, (1) +H(y,M) S GG, ) +H(y, M),
I

with equality holding if and only if the first part of extremality

condition (VII) is satisfied.

Proof. From the conjugate inequality presented in section 3.1.2 of [1]

we know that
0 0 0 0
(x7,y ) <g,(x") +hy(v),

with equality holding if and only if the extremality condition (IV) is
satisfied. From the geometric inequality established in section 3.3.3

of [1] we know that

St

PR
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Gyt <o, h +ry ),

with equality holding if and only if the extremality condition (V) is

satisfied. Likewise, we know that
¥y oot 3
> ’ +K h
(x*,y7) 8;( j) o,

with equality holding if and only if the extremality condition (VI) is

satisfied. Adding all 1+4o0(I) +o0(J) of these inequalities and taking
account of the definihg equations for x, y, G, and H proves the first
assertion. The second assertion is an immediate consequence of the fact
j +
that K‘j >0 when (x ,Kj)GCj

immediate consequence of the fact that )Li >0 when (yi',)\i) €D

» j€J; and the third assertion is an

+

L i€l. q.e.d.

Now, the fact that x and y are in the cone X and its dual Y respectively
combined with a sequential application of all three assertions of Lemma

5a shows that
05 (x,y) <G(x,6) +2 A g, (x') +H(y,\) +2 ¢,h, o))
1 i®i 3 13
< G(x,K) +2 xigi(xi) +H(y,\)
1
< G(x,%) +H(y,\),
with equality holding in all four inequalities if and only if the equality

conditions stated in the theorem are satisfied. q.e.d.

The following important corollary is an immediate consequence of

Theorem 5.




Corollary 5A. 1f the dual problems A and B are both consistent, then

(1) the infimum ¢~ for problem A is finite, and

<ep+H(y,A) for each (y,A) €T,

(ii) the infimum § for problem B is finite, and

O<seooty.

The strictness of the inequality in conclusion (ii) plays a crucial

role in almost all duality theorems.

DEFINITION. Consistent dual problems A and B for which

0<op+y

have a duality gap of ¢+ y.

A much more thorough discussion of duality theory and the role played by

duality gaps is given in [1] and some of the references cited therein.
The link between geometric Lagrangians and geometric duality can

now be futher strengthened by the following tie between dual problem B

and the P vectors for problem A defined in section 3.1.

Theorem 6. Given that problem A is consistent with a finite infimum o,

(1) 4if problem A has a P vector, then problem B is consistent and

O=cn+y,

(2) 4if problem B is consistent and O =c+y, then
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{(y*,A*) | (y*,A*) is a P vector for problem A} =T*,

Proof. If (y*,\*) is a P vector for problem A, then Lemma 4b
implies that (y*,\*) is feasible for problem B and that ¢ = -H(y*,\%),
which in turn implies that y = H(y*,\*) by virtue of conclusion (i) to
Corollary 5A. Consequently, 0 =c+y and (y*,A%*) € T*,

On the other hand, 1f problem B is consistent and 0 =g+ y, then each
vector (y*,)*) in T* has the property ¢ = -H(y*,\*), and hence each such
vector (y*,\*) is a P vector for problem A by virtue of the first two

paragraphs of this subsection. q.e.d.

An important consequence of Theorem 6 is that, when they exist, all
P vectors for problem A can be obtained simply by computing the dual
optimal solution set T*. However, there are cases in which the vectors
in T* are not P vectors for problem A, though such cases can occur only
when 0<e+4{, in which event Theorem 6 implies that there can be no P
vectors for problem A.

The following theorem provides an important tie between dual problem

B and the Kuhn-Tucker vectors for problem A defined in section 3.1.

Theorem 7. Given that problems A and B are both consistent and that

0=¢+y, if there is a minimizing sequence [(yq,xq) }T for problem B (i.e.

(yq,)\q)ET and lim H(yq,xq) =¢) such that 1lim )\q exists and is finite,
q=to q=+

A
then \*= lim )‘q is a Kuhn-Tucker vector for problem A.
q-o+cn

Proof. The feasibility of (yq,kq) implies that 2120 for each q, SO

A >0, 1€1.
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Now, the feasibility of (y1,29) and a sequential application of the

first two assertions of Lemma 5a show that

(xy Y <6(x,0) +2 3%, 1) +HETAY +Z «.h, )
= Aoy SR
< 606, 0) +2 Ajg, (1) +HGI D)
I

for each (x,¥) €C and for each q. Consequently, for each (x,X) € C such

that x € X we deduce that
0 <G(x,k) +2 xggi(xi) +H(yL,%
I

for each q, because quY. This inequality and the hypotheses

1im HyT,29) =y and 1im A% =A% clearly imply that
q=+o q=+ox

0SG(x,%) +2 A (xi) +y

*
g
1 1®1

A
for each (x,X) €C such that x€ X. Using the fact that Lo(x,K;)\*) =G(x,¥X) +
*
% A8y
equality that

(xi) and the hypothesis 0 =¢+{, we infer from the preceding in-

o< inf L (x,K; A%).
(x,K) €C
Xx€X
Now, choose a minimizing sequence [(xq,Kq) }T for problem A, and then observe

for each q that
L, 3,08 s, 69,

*
because )‘i >0 and 8y (xqi) <0, 1€1., From the construction of {(xq,Kq)}T

we know that (xq,’(q) €C and xY€ X for each q and that o= 1lim G(xq,Kq);
q=+oo

so we conclude from the preceding two displayed inequalities that
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0= inf L (x,K; \*%). q.e.d,
(x,k)ec °
xEX

The following corollary ties the dual optimal solution set T*

directly to Kuhn-Tucker vectors for problem A.

Corollary 7A. Given that problems A and B are both consistent and that

0=ep+y, each (y*,\*) € T* provides a Kuhn-Tucker vector \* for problem

A.

The following corollary ties the set of all P vectors (y*,\*) for

problem A directly to the set of all Kuhn Tucker vectors A* for problem A.

Corollary 7B. Given that problem A is consistent with a finite infimum

©, each P vector (y*,\*) for problem A provides a Kuhn-Tucker vector

A* for problem A.

Proof. Use Theorem 6 along with Corollary 7A.

Finally, it is worth noting that Theorem 7 and its two corollaries
also provide certain connections between dual problem B and the
"ordinary dual problem'" corresponding to problem A. Those connections
are left to the reader's imagination while more subtle connections are

given in [4]. #




san.

References
Peterson, Elmor L., "Geometric Programming', SIAM Review, 18(1976),
1-51.

Rockafellar, R.T., Convex Analysis, Princeton University Press,
Princeton, New Jersey (1970).

Peterson, Elmor L., "Optimality Conditions in Generalized Geometric
Programming' 6 to appear.

, "Geometric Duality vis-a-vis Ordinary Duality",

in preparation.




Rpps—— LT S el e

cndnts g

.

(R Froce / JJ_E Wc 5

. 3 & ey
B \ -RECAOS
. ; AF-h70-€-2516-92
E | 9. PERFORMING ORGANIZATION KAME AND ADDRESS — [ 106. PROGRAM ELEMEN l'.s-"lngbi;%M
B 4 RE & WoiF . WUNEER ——
8 i ‘ ey y P“""V AREA & WORK UNST s
i orthv r \ ty
Industrial /M nt
N FICE RKAME AND A s
ice of Scientif Research/NM
Washington, DC 20332 e ‘ / 2 ’
4 3 WONITORING A Y NAME & ADDR : clling Office) | 15. SECURITY C_\ﬁﬂ'ﬂzxw,uagj
i
i FIED
ATION DCWHGRADING
] 2 il A TN | SER e i e el
8!
i
18. SUPPLEMENTARY NOTES C 3

19, KEY WORDS (Continue on reverse side if necessrry end identify

S —
.
.

20
# Ixtensions of the ordinary Lagrangian are used both in saddle point
characterizations of optimality and in a development of &

: £ duality theory. §‘

h

\
oo 53 A s
| | SR K e b e 3

DD .:.{3 14/3 DITIGN OF 1 NOV 65 'S OBSOLETE

ORI & A nan

o e ) e T



